Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream.

نویسندگان

  • Geraldine Zimmer
  • Judith Rudolph
  • Julia Landmann
  • Katrin Gerstmann
  • André Steinecke
  • Christin Gampe
  • Jürgen Bolz
چکیده

The integration of interneuron subtypes into specific microcircuits is essential for proper cortical function. Understanding to what extent interneuron diversity is regulated and maintained during development might help to reveal the principles that govern their role as synchronizing elements as well as causes for dysfunction. Particular interneuron subtypes are generated in a temporally regulated manner in the medial ganglionic eminence (MGE), the caudal ganglionic eminence, and the preoptic area (POA) of the basal telencephalon. Long-range tangential migration from their site of origin to cortical targets is orchestrated by a variety of attractive, repulsive, membrane-bound, and secreted signaling molecules, to establish the critical balance of inhibition and excitation. It remains unknown whether interneurons deriving from distinct domains are predetermined to migrate in particular routes and whether this process underlies cell type-specific regulation. We found that POA- and MGE-derived cortical interneurons migrate within spatially segregated corridors. EphrinB3, expressed in POA-derived interneurons traversing the superficial route, acts as a repellent signal for deeply migrating interneurons born in the MGE, which is mediated by EphA4 forward signaling. In contrast, EphA4 induces repulsive ephrinB3 reverse signaling in interneurons generated in the POA, restricting this population to the superficial path. Perturbation of this bidirectional ephrinB3/EphA4 signaling in vitro and in vivo leads to a partial intermingling of cells in these segregated migratory pathways. Thus, we conclude that cell contact-mediated bidirectional ephrinB3/EphA4 signaling mediates the sorting of MGE- and POA-derived interneurons in the deep and superficial migratory stream.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence.

Inhibitory interneurons control the flow of information and synchronization in the cerebral cortex at the circuit level. During embryonic development, multiple subtypes of cortical interneurons are generated in different regions of the ventral telencephalon, such as the medial and caudal ganglionic eminence (MGE and CGE), as well as the preoptic area (POA). These neurons then migrate over long ...

متن کامل

Inhibitory interneurons control the flow of information and synchronization in the cerebral cortex at the circuit level. During embryonic development, multiple subtypes of cortical interneurons

Inhibitory interneurons control the flow of information and synchronization in the cerebral cortex at the circuit level. During embryonic development, multiple subtypes of cortical interneurons are generated in different regions of the ventral telencephalon, such as the medial and caudal ganglionic eminence (MGE and CGE), as well as the preoptic area (POA). These neurons then migrate over long ...

متن کامل

Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons.

Neocortical GABAergic interneurons in rodents originate from subpallial progenitor zones. The majority of mouse neocortical interneurons are derived from the medial and caudal ganglionic eminences (MGE and CGE, respectively) and the preoptic area (POA). It is controversial whether the lateral ganglionic eminence (LGE) also generates neocortical interneurons. Previously it was shown that the tra...

متن کامل

The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain.

The migratory paths of interneurons derived from the ganglionic eminence (GE), and particularly its caudal portion (CGE), remain essentially unknown. To clarify the three-dimensional migration profile of interneurons derived from each part of the GE, we developed a technique involving focal electroporation into a small, defined portion of the telencephalic hemisphere. While the medial GE cells ...

متن کامل

The embryonic preoptic area is a novel source of cortical GABAergic interneurons.

GABA-containing (GABAergic) interneurons play an important role in the function of the cerebral cortex. Through mostly inhibitory mechanisms, interneurons control hyperexcitability and synchronize and shape the spatiotemporal dynamics of cortical activity underlying various brain functions. Studies over the past 10 years have demonstrated that, in most mammals, interneurons originate during dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 50  شماره 

صفحات  -

تاریخ انتشار 2011